Apply advanced machine learning models to perform sentiment analysis and classify customer reviews such as Amazon Alexa products reviews
Understand the theory and intuition behind several machine learning algorithms
Implement classification algorithms in Scikit-Learn for K-Nearest Neighbors, (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression
Build an e-mail spam classifier using Naive Bayes classification Technique
Apply machine learning models to Healthcare applications such as Cancer and Kyphosis diseases classification
Develop Models to predict customer behavior towards targeted Facebook Ads
Classify data using K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression
Build an in-store feature to predict customer's size using their features
Develop a fraud detection classifier using Machine Learning Techniques
Master Python Seaborn library for statistical plots
Understand the difference between Machine Learning, Deep Learning and Artificial Intelligence
Perform feature engineering and clean your training and testing data to remove outliers
Master Python and Scikit-Learn for Data Science and Machine Learning
Learn to use Python Matplotlib library for data Plotting
Comments
Post a Comment